Bounding the Number of Reduced Trees, Cographs, and Series-Parallel Graphs by Compression
نویسندگان
چکیده
منابع مشابه
On the number of reduced trees, cographs, and series-parallel graphs by compression
We give an efficient encoding and decoding scheme for computing a compact representation of a graph in one of unordered reduced trees, cographs, and series-parallel graphs. The unordered reduced trees are rooted trees in which (i) the ordering of children of each vertex does not matter, and (ii) no vertex has exactly one children. This is one of basic models frequently used in many areas. Our a...
متن کاملBounding cochordal cover number of graphs via vertex stretching
It is shown that when a special vertex stretching is applied to a graph, the cochordal cover number of the graph increases exactly by one, as it happens to its induced matching number and (Castelnuovo-Mumford) regularity. As a consequence, it is shown that the induced matching number and cochordal cover number of a special vertex stretching of a graph G are equal provided G is well-covered bipa...
متن کاملGraph structure and Monadic second-order logic
Exclusion of minor, vertex-minor, induced subgraph Tree-structuring Monadic second-order logic : expression of properties, queries, optimization functions, number of configurations. Mainly useful for tree-structured graphs (Second-order logic useless) Tools to be presented Algebraic setting for tree-structuring of graphs Recognizability = finite congruence ≡ inductive computability ≡ finite det...
متن کاملOn Some Cograph Extensions and Their Algorithms
This paper reviews some classes of graphs related to cographs. The characterization of cographs by which there is no induced path on three edges (P4) is relaxed in various ways. Considered are classes of graphs that are uniquely representable by trees. Three such classes studied here are: P4-reducible, P4-sparse and P4-extendible graphs. In addition, we show that the class of P4-lite graphs has...
متن کاملPlane 3-trees: Embeddability & Approximation
We give anO(n log n)-time linear-space algorithm that, given a plane 3-tree G with n vertices and a set S of n points in the plane, determines whether G has a point-set embedding on S (i.e., a planar straight-line drawing of G where each vertex is mapped to a distinct point of S), improving the O(n)-time O(n)-space algorithm of Moosa and Rahman. Given an arbitrary plane graph G and a point set ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Math., Alg. and Appl.
دوره 5 شماره
صفحات -
تاریخ انتشار 2012